Improved network community structure improves function prediction
نویسندگان
چکیده
منابع مشابه
Improved network community structure improves function prediction
We are overwhelmed by experimental data, and need better ways to understand large interaction datasets. While clustering related nodes in such networks-known as community detection-appears a promising approach, detecting such communities is computationally difficult. Further, how to best use such community information has not been determined. Here, within the context of protein function predict...
متن کاملHidden Information Revealed by Optimal Community Structure from a Protein-Complex Bipartite Network Improves Protein Function Prediction
The task of extracting the maximal amount of information from a biological network has drawn much attention from researchers, for example, predicting the function of a protein from a protein-protein interaction (PPI) network. It is well known that biological networks consist of modules/communities, a set of nodes that are more densely inter-connected among themselves than with the rest of the n...
متن کاملImproving Network Community Structure with Link Prediction Ranking
Community detection is an important step of network analysis that relies on the correctness of edges. However, incompleteness and inaccuracy of network data collection methods often cause the communities based on the collected datasets to be different from the ground truth. In this paper, we aim to recover or improve the network community structure using scores provided by different link predic...
متن کاملNetwork information improves cancer outcome prediction
Disease progression in cancer can vary substantially between patients. Yet, patients often receive the same treatment. Recently, there has been much work on predicting disease progression and patient outcome variables from gene expression in order to personalize treatment options. Despite first diagnostic kits in the market, there are open problems such as the choice of random gene signatures o...
متن کاملAlignments grow, secondary structure prediction improves.
Using information from sequence alignments significantly improves protein secondary structure prediction. Typically, more divergent profiles yield better predictions. Recently, various groups have shown that accuracy can be improved significantly by using PSI-BLAST profiles to develop new prediction methods. Here, we focused on the influences of various alignment strategies on two 8-year-old PH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2013
ISSN: 2045-2322
DOI: 10.1038/srep02197